top of page

Modelización energética de edificios (BEM) en acción

La práctica de la modelización energética de edificios (BEM) implica la introducción meticulosa de diversos datos relativos a aspectos como la disposición de los edificios, los materiales de construcción, las condiciones climáticas locales, las tendencias de ocupación y las especificaciones de los equipos. La hábil integración de estos datos en modelos energéticos es de vital importancia.

Una comprensión completa de la física de construcción sirve como piedra angular para simular con precisión el rendimiento energético de un edificio. Esto abarca un profundo conocimiento de los principios de transferencia de calor, diseños óptimos de envolventes de edificios, sistemas de climatización, esquemas de iluminación y otros factores influyentes que afectan directamente el consumo de energía.

 

El Modelo de Energía para Edificios es un activo inestimable en el ámbito de la eficiencia energética y el diseño arquitectónico sostenible. Al pronosticar y cuantificar adecuadamente el rendimiento energético, esta herramienta se convierte en un instrumento fundamental para la configuración de estructuras que no solo son eficientes en el uso de los recursos, sino también conscientes del medio ambiente. Para más preguntas o información adicional, no dude en ponerse en contacto con PMTech IT - Smart Building. Building Energy Management.

 

Por favor refiérase al proyecto de muestra proporcionado a continuación, mostrando una instancia de implementación del ICE de la AIF.

2. Initial Building Model design.

Based on the available data, a basic BIM model of the object is developed, reflecting the architectural and structural features of the object. This is a semi-automatic mode of operation in Revit.Autodesk, requiring the participation of a BIM designer.

The final set of prepared parameters, in addition to the BIM model, includes a description of engineering systems and equipment, a harmonogram of usage, properties control systems, human behavior, and environmental conditions. Thus, a primary Energy Model of the real object has been created

Property type

Total floor area, sqm

Main heating fuel

Office

1748

Natural gas

C. Building performance assessment with BIMproEnergy modelling simulator.

The model’s calculation core is based on ISO 52016 – Energy efficiency of buildings - energy requirements for heating and cooling, indoor temperatures and sensitive and latent heat loads, an international standard.

The mathematical model automatically simulates the annual cycle of energy consumption.

In the first stage of the assessment, we use several standard forms that include calculations of monthly electricity and natural gas consumption, divided into ventilation and air conditioning, lighting, office equipment, heating and hot water. For example:

1. Annual energy consumption assessment by end use (Base Run As is):

2. Diagnostics of facility energy consumption.

As part of the task of determining the main directions for increasing energy efficiency for this facility,

The most significant directions for reducing energy consumption while maintaining (not deteriorating) the consumer characteristics of the premises have been identified.

Three main directions for increasing the energy efficiency of the facility have been identified:

1. Reconstruction of lighting (replacement of fluorescent lamps with LED lamps).

2. Modernization of ventilation and cooling (upgrade of standard electric motors to variable power motors).

3. Thermal insulation of external walls (currently there is no façade insulation).

Diagnostics of facility.jpg

3. Drawing up a recommendation report.

The energy model simulated the facility's annual cycle for each option and assessed their combined impact on facility performance.

This report shows the improvement in building performance as a percentage of the monthly and annual cycle compared to the baseline (as is) scenario, the impact of each retrofit option on building performance, and their cumulative effect.

Summary of the potential contribution of retrofit options to improving the energy performance of the facility. The amount of total reduction of energy resources consumption by items 1-3 in the annual cycle.

 

The potential reduction in the facility's energy consumption has been identified

Opportunity.jpg

D. Summary.

1. In the process of this work, the main directions of modernization were identified and ranked in relation to their contribution to the energy efficiency of the facility.
2. For subsequent more detailed analysis and formation of a roadmap for the modernization of the facility, it is necessary to clarify the description of architectural features, technical specifications of engineering equipment, employee work schedules, the use of electrical appliances for household and professional purposes, details of architectural plans and materials used in the building.
3. It is necessary to determine the objectives of the planned modernization, as well as the format of documents - reports and specifications to be provided to financial institutions in support of the business case and as part of the business plan, as well as to be provided to potential contractors as part of the terms of reference.

4. The created primary BIM model can be used for further development of BIM documentation, and the initial Energy Model can be used as a set of Core Rules for Building Management Systems (BMS) during operation.

bottom of page